Lymphotoxin-alpha C804A polymorphism is a risk factor for stroke. The PROSPER study

A R T I C L E I N F O
Article history:
Received 28 February 2008
Received in revised form 8 April 2008
Accepted 15 April 2008
Available online 22 April 2008

Keywords:
Lymphotoxin-alpha
Stroke
Inflammation
Atherosclerosis
Elderly

A B S T R A C T
Inflammation plays a prominent role in the development of atherosclerosis, which is the most important risk factor for vascular events. Lymphotoxin-alpha (LTA) is a pro-inflammatory cytokine and is found to be expressed in atherosclerotic lesions. We investigated the association between the C804A polymorphism within the LTA gene and coronary and cerebrovascular events in 5804 participants of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER). The primary endpoint was the combined endpoint of death from coronary heart disease, non-fatal myocardial infarction, and clinical stroke. Secondary endpoints were the coronary and cerebrovascular components separately. All associations were assessed with a Cox-proportional hazards model adjusted for sex, age, pravastatin use, and country. Our overall analysis showed a significant association between the C804A polymorphism and the primary endpoint (p = 0.03). After stratification for gender, this association was found only in males. Furthermore, we found that the association between the C804A polymorphism and the primary endpoint was mainly attributable to clinical strokes (p = 0.02). The C804A polymorphism in the LTA gene associates with clinical stroke, especially in men. But further research is warranted to confirm our results.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Inflammation plays a prominent role in the development of atherosclerosis, which is the most important risk factor for vascular events (Kaperonis et al., 2006; Libby, 2002; Libby et al., 2002). Lymphotoxin-alpha (LTA), also known as tumor necrosis factor beta (TNFβ), is a pro-inflammatory cytokine which activates a cytokine cascade by inducing interleukin-1 (Gray et al., 1984; McDevitt et al., 2002). LTA is expressed in atherosclerotic lesions and induces the expression of a number of molecules involved in atherogenesis (Laxton et al., 2005; Schreyer et al., 2002). Moreover, atherosclerotic lesions in LTA knock-out mice are significantly smaller compared to LTA wild-type mice (Schreyer et al., 2002).

Genetic variation in the LTA gene has been associated with vascular disease, like myocardial infarction (MI) and stroke (Hagiwara et al., 2008; Laxton et al., 2005; Ozaki and Tanaka, 2005; Porto et al., 2005; Szolnoki et al., 2005; Um et al., 2003). For example, Laxton et al. have reported an association between the LTA C804A polymorphism and the severity of atherosclerosis in patients with coronary artery disease (Laxton et al., 2005). They found that carriers of the 804A variant had a higher risk for severe atherosclerosis. Furthermore, they found that only the male carriers had this higher risk.

Based on this evidence we hypothesized that genetic variation in the LTA gene is associated with vascular disease, especially in men. We assessed the association between the LTA C804A polymorphism and coronary and cerebrovascular events in participants.
of the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER).

2. Methods

A detailed description of the protocol of the PROSPER study has been published elsewhere (Shepherd et al., 1999, 2002). Here a short outline is provided.

2.1. Participants

The PROSPER study was a prospective multicenter randomized placebo-controlled trial to assess whether treatment with pravastatin diminishes the risk of major vascular events in elderly. Between December 1997 and May 1999, we screened and enrolled subjects in Scotland (Glasgow), Ireland (Cork), and the Netherlands (Leiden). Men and women aged 70–82 years were recruited if they had pre-existing vascular disease or increased risk of such disease because of smoking, hypertension, or diabetes. A total number of 5804 subjects were randomly assigned to pravastatin or placebo for an average 3.5-year intervention period. The primary endpoint in the study was the combined endpoint of death from coronary heart disease (CHD), non-fatal myocardial infarction (MI), and occurrence of clinical stroke, either fatal or non-fatal. When death occurred following a non-fatal stroke within a period of 28 days, it was regarded as a fatal stroke. Secondary endpoints were the separate coronary and cerebrovascular components of the primary endpoint. All endpoints were adjudicated by the study Endpoint Committee. More details about the diagnosis of the cerebrovascular and coronary events within the PROSPER study have been published elsewhere (Shepherd et al., 1999).

2.2. Genotyping

The single nucleotide polymorphism (SNP) C804A (rs1041981) in the LTA gene was selected based on its allele frequency and available literature. A genome-wide scan showed two SNPs within the LTA gene that were associated with vascular disease (Ozaki et al., 2002). An additional study showed that the LTA C804A polymorphism is indeed functional and results in an amino-acid change T26N (Ozaki and Tanaka, 2005). The SNP was genotyped by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry (MS), using the Sequenom MassARRAYtm methodology (Sequenom Inc., San Diego, CA, USA). Amplification reactions and parameters were based on the manufacturer’s instructions.

Genotyping of the LTA C804A polymorphism was successful in 5389 participants. The results of the remaining patients are missing due to lack of DNA or inconclusive genotyping.

2.3. Statistical analysis

The program Haploview (Barrett et al., 2005) was used to estimate the allele frequency and to test the consistency of the genotype frequency at the SNP locus with Hardy–Weinberg equilibrium. Hazard ratios (HR) with 95% confidence intervals (CI) were calculated with Cox-proportional hazards model. Subjects who withdrew consent or deceased during the study were censored on the date they left the study. All analyses were adjusted for sex, age, pravastatin use, and country. All analyses were additionally sex-stratified performed. To assess whether the PROSPER study is large enough to gain statistical power in a sex-stratified analysis, we performed power calculations (Quanto software, http://hydra.usc.edu/gxe). Based on a total number of 124 cases with a fatal or non-fatal stroke in males (n = 2617), we calculated that with a minor allele frequency (MAF) of 20% in a log-additive model, a baseline risk of fatal or non-fatal stroke of 4%, and a gene effect of 1.5, the statistical power to detect the association between the polymorphism and fatal or non-fatal stroke is 98% for a p-value of 5×10^{-2}.

The SPSS software (version 12.0.1, SPSS Inc., Chicago, IL) was used for all statistical analyses. p-Values lower than 0.05 were considered statistically significant.

3. Results

Genotyping of the LTA C804A polymorphism was successful for 5389 subjects, the results of the remaining subjects were missing because of insufficient DNA or incomplete genotyping (success rate 93.2%). Table 1 represents the baseline characteristics of all 5389 participants divided over categories of the C804A polymorphism. About 50% of the participants were male (N = 2617) and the mean age of all subjects at study entry was 75.3 years. The mean follow-up time was 3.2 years (range 2.8–4.0) for participants who did not die or withdrew consent. There were no differences in baseline characteristics between genotype groups.

The major allele frequency of the C804A polymorphism was 63% in all participants. The C804A polymorphism showed no significant deviation from Hardy–Weinberg equilibrium (p = 0.77). The genotype frequencies between the three countries differed significantly (p < 0.01, data not shown), for Scotland the major allele frequency was 62%, for Ireland 61%, and for the Netherlands 66%. Therefore all analyses were adjusted for country to control for population stratification.

Fig. 1. shows the association between the C804A polymorphism and the primary endpoint. In the overall analysis a significant relation with the primary endpoint was found (p = 0.03). The significant association of the overall analysis was mainly due to homozygous carriers of the variant (HR 1.27, 95% CI 1.03–1.55). Furthermore, after stratification for gender, the relation with the primary endpoint was especially present in males (HR 1.36, 95% CI 1.04–1.77) and not in females (HR 1.15, 95% CI 0.84–1.58), although the interaction term for gender with genotype was not significant (p = 0.60).

We assessed the association of the C804A variant with the coronary and cerebrovascular endpoints separately. The association with the primary endpoint in men was mainly attributable to occurrence of clinical strokes and not to coronary events (Fig. 2.). The increased risk for clinical stroke for the heterozygous carriers was 1.43 (95% CI 0.95–2.15) and for the homozygous male carriers 2.07 (95% CI 1.24–3.44) (p-trend = 0.02). In women, there was no significant association for clinical stroke for both the heterozygous carriers (HR 0.94, 95% CI 0.63–1.41) and the homozygous carriers (HR 1.47, 95% CI 0.89–2.44).

4. Discussion

We assessed the association between the C804A polymorphism in the LTA gene and vascular events in an elderly population at risk for vascular disease. Our results indicate that carriers of the 804A allele have an increased risk for the primary study endpoint consisting of coronary events and clinical strokes. After stratification for gender, this association was only significant in men. Furthermore, we found that the association between the C804A polymorphism and the primary endpoint in males was mainly attributable to incident strokes.

Although we found no statistically significant interaction with gender, the association between the C804A polymorphism and clinical strokes was only significant in men. Such a sex-specific effect has been reported previously (Laxton et al., 2005).
were homozygous for the 804A allele were more likely to develop atherosclerosis than homozygous females. This finding is in line with our results and fits well within the widely recognized difference in susceptibility and severity of atherosclerosis between men and women. Men have a higher predisposition to atherosclerosis compared to females (Joakimsen et al., 1999). Likewise, several other genes, like apolipoprotein E, have been shown to have gender-specific effects on cardiovascular outcomes (Desvarieux et al., 2004; Reilly et al., 1994). However, further research is necessary to confirm our results.

Three studies have previously investigated the association between the LTA gene and the susceptibility for stroke (Hagiwara et al., 2008; Szolnoki et al., 2005; Um et al., 2003). The study of Hagiwara et al. found no higher frequency of the LTA C804A polymorphism in stroke patients (Hagiwara et al., 2008). Um et al. found an increase of the homozygous 252G allele in subjects with cerebral infarction compared to controls (Um et al., 2003). Szolnoki et al. also found that the homozygous LTA allele with the 252G and 804A SNPs is more frequent in stroke patients than in controls (Szolnoki et al., 2005). These studies combined with our findings indicate that carriers of the variant allele are indeed at a higher risk for the development of clinical strokes.

We do not have information about the separate ischemic and hemorrhagic strokes. In our study both types of strokes were combined into one clinical endpoint. Because we know from previous studies in elderly populations that approximately 80% of all strokes is attributable to ischemic events (Melcon and Melcon, 2006; Sagui et al., 2005), the association between the C804A polymorphism and clinical stroke is probably driven by an association between the polymorphism and ischemic stroke. If there is no association with the polymorphism and hemorrhagic stroke, then the association we found is an underestimation of the true relative risk for ischemic stroke.

The whole LTA gene is in strong linkage disequilibrium, therefore the 252G allele naturally coexists with the 804A allele (Clarke et al., 2006; Ozaki et al., 2002). The C804A polymorphism causes an amino-acid change from threonine (T) to asparagine (N) at codon 26. They found that the variant protein 26N is associated with a twofold increase in the induction of cell-adhesion molecules in vascular smooth muscle cells (Ozaki et al., 2002). Adhesion molecules are implicated in cardiovascular disease because elevated levels have been observed in atherosclerotic lesions (Belch et al., 1997; Hwang et al., 1997). This might explain

Table 1
Baseline characteristics of the participants of the PROSPER study (N = 5389)

<table>
<thead>
<tr>
<th>Continuous variates (mean, SD)</th>
<th>Wt/Wt (N = 2102)</th>
<th>Wt/Var (N = 2547)</th>
<th>Var/Var (N = 740)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>75.4 (3.3)</td>
<td>75.3 (3.4)</td>
<td>75.2 (3.3)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>26.8 (4.2)</td>
<td>26.9 (4.2)</td>
<td>26.7 (4.3)</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>5.7 (0.9)</td>
<td>5.7 (0.9)</td>
<td>5.6 (0.9)</td>
</tr>
<tr>
<td>LDL cholesterol (mmol/L)</td>
<td>3.8 (0.8)</td>
<td>3.8 (0.8)</td>
<td>3.8 (0.8)</td>
</tr>
<tr>
<td>HDL cholesterol (mmol/L)</td>
<td>1.3 (0.4)</td>
<td>1.3 (0.4)</td>
<td>1.3 (0.4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Categorical variates (N, %)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>1067 (51)</td>
<td>1317 (52)</td>
<td>388 (52)</td>
</tr>
<tr>
<td>Current smoker</td>
<td>547 (26)</td>
<td>716 (28)</td>
<td>193 (26)</td>
</tr>
<tr>
<td>History of diabetes</td>
<td>219 (10)</td>
<td>270 (11)</td>
<td>93 (13)</td>
</tr>
<tr>
<td>History of hypertension</td>
<td>1327 (63)</td>
<td>1550 (61)</td>
<td>440 (60)</td>
</tr>
<tr>
<td>History of angina</td>
<td>580 (28)</td>
<td>666 (26)</td>
<td>194 (26)</td>
</tr>
<tr>
<td>History of claudication</td>
<td>129 (6)</td>
<td>187 (7)</td>
<td>47 (6)</td>
</tr>
<tr>
<td>History of myocardal infarction</td>
<td>265 (13)</td>
<td>366 (14)</td>
<td>88 (12)</td>
</tr>
<tr>
<td>History of vascular disease</td>
<td>938 (45)</td>
<td>1127 (44)</td>
<td>313 (42)</td>
</tr>
<tr>
<td>History of stroke or TIA</td>
<td>253 (12)</td>
<td>279 (11)</td>
<td>75 (10)</td>
</tr>
</tbody>
</table>

Fig. 1. Association between the lymphotoxin-alpha C804A genotype and the primary endpoint in the participants of the PROSPER study (n = 5389). The primary endpoint included coronary heart disease death, non-fatal myocardial infarction, and fatal or non-fatal stroke. In the overall group a significant association between the C804A genotype and primary endpoint was found (p = 0.03), namely because an increased risk for the primary endpoint in males (HR 1.36, 95% CI 1.04–1.77).
the association of the polymorphisms in the LTA gene and the increased risk for incident stroke.

In our study we found no association between the LTA polymorphism and myocardial infarction (MI). A genome-wide association study identified two functional polymorphisms in the LTA gene associated with MI (A252G and C804A) (Ozaki and Tanaka, 2005). A case-control association study by Ozaki et al. found that subjects homozygous for the mutant allele (804AA) had an almost twofold higher risk for MI (Ozaki et al., 2002). However, three observational studies did not find any association between the LTA polymorphisms and myocardial infarction. (Clarke et al., 2006; Kimura et al., 2007; Seldacek et al., 2007). Moreover, a meta-analysis of six studies investigating this association found no significant result (Clarke et al., 2006). The association between the LTA gene and incident stroke has not been replicated recently. Further research into this association is warranted before we can draw definite conclusions from our results.

That we found an association between the LTA C804A genotype and incident stroke and not with coronary events is understandable based on available literature (Caprie Study group, 1996). Recently, Vanderlaan et al. suggested that the variation of lesion development at different vascular beds is sensitive to various parameters (Vanderlaan et al., 2004). For example, hypertension is one of the main risk factors for atherosclerosis in the carotid arteries and for incident stroke whereas smoking is a stronger risk factor for coronary atherosclerosis (Caprie Study group, 1996). This indicates that cerebrovascular disease has other risk factors than coronary disease, which also suggests a different genetic background. LTA 804AA carriers could therefore have an increased risk for incident stroke and not for coronary events.

A possible weakness of our study is that we have measured only one SNP in the LTA gene. But because the SNPs of the LTA gene are in strong linkage disequilibrium, information of one SNP is sufficient for analyses. Moreover, we have an enrichment of the variant allele in our study population compared to European populations reported in the NCBI database (http://www.ncbi.nlm.nih.gov). However, this does not affect the internal validity.

The strength of our study is that it is a prospective study which is not affected by population stratification (Beaty et al., 2005). Because the genotype frequencies differed in the three countries we performed a stratified analysis for each country. This analysis showed consistent but not significant results, because of lack of statistical power. Another strength is our population size. We had sufficient cases of incident stroke to reach a high power for statistical analyses. Furthermore, all participants were recruited if they had pre-existing vascular disease or increased risk of such disease because of smoking, hypertension, or diabetes, which makes this study population suitable for investigating coronary and cerebrovascular diseases.

In conclusion, we found an association of the C804A polymorphism in the LTA gene with the primary endpoint, which seems primarily due to an association in men. After separating the coronary and cerebrovascular events, we found that the association with the primary endpoint and the C804A variant was mainly attributable to clinical stroke. This study is a further argument that the LTA gene is associated with cerebrovascular disease, especially in males, but further research is warranted.

Acknowledgements

This work was partly supported by an investigator initiated Grant from Bristol-Myers Squibb, USA. We like to thank the Centre for Medical Systems Biology for their contribution to our study.

Prof. Dr. J.W. Jukema is an Established Clinical Investigator of the Netherlands Heart Foundation (2001 D 032).

References

between periodontal disease, tooth loss, and atherosclerosis. Stroke 35 (9), 2029–2035.

