Validity of joint space width measurements in hand osteoarthritis

W.Y. Kwok†, J. Bijsterbosch‡, S.H. Malm‡, N.R. Biermasz‡, K. Huetink§, R.G. Nelissen||, I. Meulenbelt¶, T.W.J. Huizinga†, R. van ’t Klooster§, B.C. Stoel§, M. Kloppenburg†

| Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| Department of Orthopaedics, Leiden University Medical Center, Leiden, The Netherlands
| Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands

Summary

Objective: To investigate the validity of joint space width (JSW) measurements in millimeters (mm) in hand osteoarthritis (OA) patients by comparison to controls, grading of joint space narrowing (JSN), and clinical features.

Methods: Hand radiographs of 235 hand OA patients (mean age 65 years, 83% women) and 471 controls were used. JSW was measured with semi-automated image analysis software in the distal, proximal interphalangeal and metacarpal joints (DIPJs, PIPJs and MCPJs). JSN (grade 0–3) was assessed using the osteoarthritis research society international (OARSI) atlas. Associations between the two methods and clinical determinants (presence of pain, nodes and/or erosions, decreased mobility) were assessed using Generalized Estimating Equations with adjustments for age, sex, body mass index (BMI) and mean width of proximal phalanges.

Results: JSW was measured in 5631 joints with a mean JSW of 0.98 mm (standard deviation (SD) 0.21), being the smallest for DIPJs (0.70 (SD 0.25)) and largest for MCPJs (1.40 (SD 0.25)). The JSN = 0 group had a mean JSW of 1.28 mm (SD 0.34), the JSN = 3 group 0.17 mm (SD 0.23). Controls had larger JSW than hand OA patients (P-value < 0.001). In hand OA, females had smaller JSW than men (β = −0.08, (95% confidence interval (95% CI) −0.15 to −0.01)) and lower JSW was associated with the presence of pain, nodes, erosions and decreased mobility (adjusted β = −0.21 (95% CI −0.27, −0.16), −0.37 (−0.40, −0.34), −0.61 (−0.68, −0.54) and −0.46 (−0.68, −0.24) respectively). These associations were similar for JSN in grades.

Conclusion: In hand OA the quantitative JSW measurement is a valid method to measure joint space and shows a good relation with clinical features.

© 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

Introduction

Hand osteoarthritis (OA) is a prevalent musculoskeletal disease, which can lead to pain and functional limitations in daily life1,2. Classical structural features of hand OA, such as osteophytes and joint space narrowing (JSN) can be visualized on conventional radiographs3, even if persons do not suffer from any complaints. These features are slowly progressive in time4,5. JSN in OA is considered to reflect damage and loss of articular cartilage6.

Several standardized visual grading methods are being used to score osteophytes and JSN together or separately in patients with hand OA7,8. However, these visual methods with graded scores have shortcomings. Visual grading methods are subjective and dependent on the scorer. Methods that measure these features in a more objective manner are preferable. Moreover, the visual grading methods are not able to discriminate small differences. A quantitative method would give opportunities to monitor small effects of these features. With visual grading methods it is not possible to score positive or negative changes of the joint space (e.g., widening, as present in early stages of OA or in secondary OA, such as in acromegalic patients). For measurement of joint space widening or narrowing, a quantitative method to measure the joint space width (JSW) is desirable.

van ’t Klooster et al. developed a semi-automated quantitative measurement method that is able to measure JSW in hand OA in a reproducible and accurate way9. This method has a high accuracy and repeatability in acrylic phantom joints and human-derived...
cadaver interphalangeal joints11. Until present, however, no data of studies are available which quantify JSW in a large population with hand OA patients and validate JSW against JSN in “in vivo” patients with hand OA.

The aim of this paper is to quantify the JSW in finger joints with a semi-automated quantitative method in hand OA patients and to validate it by comparing JSW with the JSW of normal controls and with the visual grading method of JSN. The association with clinical determinants on joint and patient level of JSW using the visual grading method of JSN as the standard method was also investigated.

Patients and methods

Study design and patient population

The Genetics ARthritis and Progression (GARP)12 study is a cohort study aimed at identifying determinants of OA susceptibility and progression. The study population comprises 192 Caucasian sib pairs with symptomatic OA at multiple sites in the hand or in at least two of the following sites: hand, knee, hip, or spine. Patients were recruited from rheumatologists, orthopedic surgeons, and general practitioners. Further details about the recruitment and selection have been published elsewhere12. The study was approved by the Medical Ethics Committee.

Hand OA patients from this population that were evaluated after 6 years were eligible for the present study5. Hand OA was defined according to the American College of Rheumatology criteria for clinical hand OA13 or as the presence of structural abnormalities. Structural abnormalities were defined as the presence of bony swelling in at least two of the ten selected joints from the American College of Rheumatology (ACR) criteria and a Kellgren–Lawrence score ≥ 2 in any interphalangeal or first carpometacarpal (C1MC)–1 joint.

Hand OA was scored for JSN using osteoarthritis research society international (OARSI), and JSW was measured. Data from OA patients were compared with two control cohorts.

Control population for JSW measurements

A control group was selected from databases of the Leiden Early Arthritis Clinic (EAC; n = 167) and a prospective study in patients with knee complaints (n = 304). None of these controls had symptoms of the hands. The EAC study is a prospective study started in 1993 and includes patients with early arthritis with symptoms ≤ 2 years14. The aim is to detect inflammatory disorders early in the disease state and to treat these accordingly. In all patients, conventional radiographs of hands and feet were performed at baseline. For the purpose of the present study, a selection of patients without hand symptoms was made and hand radiographs of their inclusion visit were used.

The second control population was derived from an epidemiological study which includes patients with traumatic or non-traumatic sub-acute knee complaints (also known as the KART-study)15. At a follow-up visit 10 years later, routine hand radiographs were performed in all patients. Since patients were not included in the study on the basis of hand joint pathology, we assumed that their hand joints are a valid sample of the general population for hand OA. Protocols of both studies were approved by the Medical Ethics Committee. Written informed consent was given by all patients who participated in the studies.

Radiographic assessment

Digital hand radiographs (dorsal–volar) in both the GARP and KART studies were obtained by a single radiographer (TvD) using the same standard protocol with a fixed film focus distance (1.15 m) and tube voltage of 45 kVp, 250 mA and 3.2 mA (type of film cassette Canon Detector CXD-31, imaging geometry 2256 \times 2878 mm, pixel spacing 100 μm, gray scale resolution 12-bit). Of the EAC-controls, 133 radiographs were analog and 39 were digital. For computerized analyses the analog radiographs were digitized first (VXR-12, VIDAR System Corporation, Herndon, VA). Radiographs of the EAC-controls were made according to the standard usual care protocol, without a fixed film focus distance and 5.0 mAs.

Measurement of JSW

JSW was measured using a semi-automated method described extensively elsewhere10. In brief, JSW measurement was applied to the distal interphalangeal joints (DIPJs), proximal interphalangeal joints (PIPJs) and second to fifth metacarpal joints (MCPIs) of both hands. The joints of the thumb were omitted since they were not perpendicular to the image plane and could therefore not be assessed reliably. The image analysis software identifies all joints of interest and the corresponding joint margins and subsequently measures the JSW in millimeters (mm) within a measurement interval in each joint, which was determined by the width of the respective phalanx. The automatic results of the image analysis from all study populations were reviewed by an expert (SHM) and corrected if needed. The intra-individual variation between repeat readings ($n = 24$) was low, reflected by an intra-class correlation coefficient (ICC) of 0.99. The smallest detectable difference (SDD) is used to discriminate the JSW measurements above the measurement error and was calculated as 1.98 \times standard deviation (SD) of the difference between repeated JSW measurements divided by the square root of two16. The mean difference (SD) of repeated JSW measurements was 0.017 mm (0.04) and the SDD was 0.055 mm. Regarding feasibility, the mean time to determine the JSW was 5 min and 7 s per patient (SD 2 min and 46 s).

Grading of JSN and other OA features

Using the visual grading method, the JSN score was graded 0–3 in the DIPJs, PIPJs and second to fifth MCPJs by consensus opinion of two experienced readers using the OARSI atlas in hand OA patients only15. MCPJs were not included in the original OARSI atlas, but for scoring these were regarded as PIPJs. In addition, osteophytes were graded 0–3 using the OARSI atlas. Erosions were scored by the Verbruggen–Veys scoring method and were defined as having eroded (E-phase) or remodeled irregular sclerotic subchondral plates (R-phase) in DIPJs or PIPJs16. Intra-reader reproducibility of JSN based on 25 randomly selected pairs of radiographs was good with an ICC of 0.92.

Hand pain and functioning

Self-reported pain on joint level was assessed using a standard diagram including all hand joints on which the patient was asked to mark painful joints. Pain upon lateral joint pressure was graded 0–3 for each hand joint by a single observer (JB) during physical examination ($0 = $no pain, $1 = $complaining of pain, $2 = $complaining of pain and wincing, $3 = $complaining of pain and withdrawal of the joint). Self-reported hand pain and functional limitations on patient level were assessed with the pain (five items) and function (nine items) subscales of the Australian/Canadian Osteoarthritis Hand Index (AUSCAN), on a five-point Likert scale ($0 = $none to $4 = $extreme)17. Higher scores indicate more severe pain and functional limitations.
Hand performance was assessed by measuring grip strength with a hydraulic hand dynamometer (Saebo corporation, Masan, South-Korea). Hand mobility was assessed with the Hand Mobility in Sclerodermia (HAMIS) test. Using HAMIS, nine movements included in the range of motion of the hand were graded 0 (normal) to 3 (unable to do) for each hand and summed. The total score is the mean of two hands.

Statistical analysis

Data were analyzed using statistical package for the social sciences (SPSS), version 17.0 (SPSS Inc., Chicago, IL). The JSW in relation with the JSN score was quantified and presented as mean scores with SDs.

To validate the JSW method we hypothesized that the JSW would be smaller in hand OA patients than controls and decrease with the presence of clinical determinants as age, female sex, nodes, erosive lesions and joint pain. Generalized Estimating Equations (GEE) models were performed to investigate the association of JSW with age and female sex, with adjustments for the presence of osteophytes. The GEE model is used to correct for effects within the same patient and family effects within sib pairs in the patient population. In addition, the association of JSW with female sex was adjusted for the mean width of all phalanges of both hands. The width of the proximal phalanx was measured by detecting bone contours of the proximal phalanx with an edge detector and calculating the distance between the contours at the central part of the phalanx. GEE models were also used to estimate β-coefficients for associations between JSW and JSN scores on the joint’s level with clinical determinants with robust variance estimators to account for effects within the same patient, family effects within sib pairs and mean width of the proximal phalanx. Adjustments were also made for age, sex and body mass index (BMI). For JSW, a positive or negative unstandardized regression coefficient (β-coefficient) means an increase or decrease of the mean JSW (larger or smaller joint space), respectively. For the JSN score, a positive or negative β-coefficient represents an increase (smaller JSN) or decrease (wider joint space) of the mean JSN score, respectively.

To investigate the associations of JSW and JSN scores with clinical determinants on the patient’s level, the JSW and JSN scores of both hands were summed up per patient. Associations between the summed JSW and summed JSN scores with clinical determinants were estimated using a linear mixed model with adjustments for age, sex, BMI, family effects within sibling pairs and mean width of the proximal phalanx. The fixed effects were age, sex and BMI. A random intercept was used to adjust for family effects, meaning resemblance between siblings of one family, with an unspecified covariance matrix. An additional adjustment for osteophytes was made for the association between JSW and JSN scores. The results are presented as unstandardized β-coefficients with 95% confidence interval (95% CI). Since the JSN score is not a continuous outcome measure, but a graded scoring method, the unstandardized β-coefficients of the JSW and JSN scores cannot be compared with each other.

Results

Study population

In one of the 236 eligible patients JSW measurement was not possible due to technical problems with the radiograph. Characteristics of 235 hand OA patients included in the analyses are shown in Table 1. The mean age was 64.8 years and the majority was female. JSW was measured in 5,631 joints. The JSN score was not applicable in nine joints due to technical problems and were therefore excluded.

Age, yrs	64.8 (6.9)
Women, no (%)	194 (83)
Postmenopausal women, no (%)	184 (95)
Body mass index, kg/m²	28.3 (5.8)
ACR criteria hand OA, no (%)	205 (87)
Right handed, no (%)	186 (79)
Additional OA sites, no (%)	14 (11)
Knee OA	94 (40)
Hip OA	69 (29)
Spine OA	174 (74)
AUSCAN pain	7.3 (4.8)
AUSCAN function	13.9 (8.7)
No. of self-reported painful joints	6.0 (6.3)
No. of painful joints on pressure	4.7 (5.3)
Grip strength, kg	21.4 (10.4)
HAMIS	4.0 (2.9)

Values are means (SD) unless stated otherwise.

In one of the 471 controls the JSW measurement was not available. The mean age of the controls was 46.1 years (SD 11.4) and 115 persons (42%) were female. JSW was measured in 11,280 joints.

Quantification of JSW in OA patients and controls

Most of the DIPJs (56%) and PIPJs (62%) in OA patients were classified in JSN = 1. For the MCPJs, the majority of the joints (81%) in OA patients were normal (classiﬁed as JSN = 0). The mean JSW for all joints in hand OA patients was 0.98 mm (SD 0.21), being the smallest for the DIPJs and largest for the MCPJs with 0.70 mm (SD 0.25) and 1.40 mm (SD 0.25), respectively (Table 1). The mean JSW for all joints in controls from the KART-study only was 1.18 mm (SD 0.41), for MJPJs 1.61 mm (SD 0.23), for PIPJs 0.96 mm (SD 0.20) and for DIPJs 0.90 mm (SD 0.26). The JSW of KART-controls was significantly larger than the JSW in hand OA patients (P-value < 0.001). The significance remained the same if EAC-controls were also included in the analyses.

JSW in relation with age, sex (in controls and OA patients) and JSN scores (in OA patients only)

The quantification of JSW in relation to the JSN score according to OARSI atlas is also shown in Table 2. The largest JSW was seen in the JSN = 0 group, the smallest JSW in the JSN = 3 group. No estimation for the JSW in the MCPJs with JSN = 3 is given, since only two MCP joints were present in this group.

In hand OA patients, being female was associated with a smaller JSW of the finger joints only after adjustment for presence of osteophytes (adjusted β = −0.08 (95% CI −0.15 to −0.01)). In controls, being female was also associated with a smaller JSW, when adjusted for the mean width of phalanges of the hands only (adjusted β = −0.08 (95% CI −0.12 to −0.05)), and not statistically significant for hand OA patients (adjusted β = −0.04 (95% CI −0.12 to 0.05)). Age was not associated with a smaller JSW in hand OA patients (with or without adjustments for presence of osteophytes), but older age was associated with smaller JSW in controls (Table 3). The associations of JSW as dependent variable and female sex, with additional adjustment for age, remained the same in both control and patient populations (data not shown).

Associations of JSW and JSN with clinical determinants at joint level

On the joint level, decreased JSW was associated with presence of osteophytes, self-reported pain, nodes, pain on palpation and
eroded (Table IV). The unstandardized β-coefficient can be interpreted as the mean difference in JSW between the presence and absence of the determinant in that joint. For example, if an erosive lesion was present in a joint, the mean JSW is 0.61 mm smaller in that joint. And if a joint was scored as an osteophyte grade 1 or grade 3 according to the OARSI atlas, the mean JSW is 0.20 or 0.62 mm smaller than in a joint without an osteophyte, respectively.

For the JSN score, associations with clinical determinants showed that an increase in JSN score is related to the presence of each of the determinants named above (Table IV). These associations were similar to those with JSW. For example, if an erosive lesion was present, the mean JSN score is 1.43 higher for a joint without an erosion. Since the JSN score is not a continuous outcome measure, but a graded scoring method, the unstandardized β-coefficient cannot be interpreted as an exact mean difference in this table.

Associations of summed JSW and JSN with clinical determinants at patient level

Lower total JSW was associated with a higher osteophyte scores and a higher number of joints with self-reported pain, pain on palpation and nodes (Table V). Again more JSN was related to the presence of more pain and functional limitations measured with the AUSCAN and worse hand mobility according to the HAMIS. JSN was not related to grip strength. The crude estimates for both JSW and JSN did not differ from the adjusted estimates.

Discussion

This paper compares the JSW in mm of finger joints in a large population of patients with hand OA with visual grading score for JSN and JSW measurements of controls. We showed that quantitative JSW measurements and the visual grading method for JSN are both associated with self-reported pain and functional ability, pain on palpation and the presence of osteophytes, nodes and erosions. This implies that JSW measurement is a valid method to evaluate loss of joint space in finger joints of hand OA patients.

The expectation was that the mean JSW in patients with hand OA would be smaller than in controls without hand complaints. We confirmed this hypothesis. The radiographs and JSW measurements of these controls were judged by the same expert (SHM) and measured in the same hospital with identical semi-automated method as in the present study minimizing confounding factors.

The present study showed that females had smaller JSW than men in hand OA patients after adjustment for the presence of osteophytes, since this is another feature of OA. Additional adjustment for age did not change these results. In controls, females also have smaller JSW than men after adjustment for the size of the hand (reflected by the mean width of phalanges of the hand), so partly of this effect can be contributed to the fact of having smaller hands. These results that females have smaller JSW are in accordance to data from patients with rheumatoid arthritis and healthy controls, showing that JSW in females were smaller than in males (without adjustments). The study in healthy controls showed an age-dependent decrease of the JSW in both males and females. In patients with rheumatoid arthritis (94 females, 34 males), only in females an association between age and JSW was seen. In the present study, older age was associated with a lower JSW in controls, but no association between age and JSW was seen in hand OA patients. This could be explained by the small age range between 50 and 85 years in hand OA patients which could lead to a biased (positive) association of age and JSW in this population. Alternatively, the positive association between age and JSW in hand OA patients could be explained by thickening of the cartilage in early stages of OA reflecting a larger JSW on radiographs.

We show that JSW measurements are a valid method to measure the joint space, since it is related to clinical features. In the
past it was shown that the quantitative method itself is accurate and reproducible. The visual grading method for JSN showed the same relation with clinical features. An additional advantage of JSW measurements performed by the computer is that one method is easier or more feasible to use whether they are relevant in clinical practice. Bijsterbosch et al. showed that the changes in the visual grading method were not related with clinical determinants. It could be that changes in the JSW method would be related with clinical determinants, but this hypothesis needs further investigation. In a longitudinal study in early rheumatoid arthritis it was shown that a change in JSW was a more sensitive outcome measure than a visual grading method (total Sharp score).

Several limitations of this study can be addressed. Since radiographs are still two-dimensional representations it is not possible to measure JSW as a measure of volume which can more accurately describe the three-dimensional structure of a joint. The mean JSW remains the best estimate of the cartilage of the joint. The mean JSW could be influenced by other structures such as osteophytes if these are projected in the frontal plane. The automatic measurements were reviewed by an expert in order to confirm that the JSW between the true contours of the interphalangeal bones was measured. In hand OA, no studies are known where the volume of the joint space or cartilage was quantified. In knee OA joints, Duryea et al. performed a comparison between quantitative magnetic resonance imaging (MRI) (volume and thickness measurements in mm3) with radiography (JSW in mm) in

Table IV
Association of JSW and JSN with clinical determinants in hand OA patients, joint level

<table>
<thead>
<tr>
<th>Determinant</th>
<th>JSW (n = 5631 joints)</th>
<th>JSN (n = 5631 joints)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteophytes (OARSI)</td>
<td>Adj. β (95% CI); P-value</td>
<td>Adj. β (95% CI); P-value</td>
</tr>
<tr>
<td>Osteophyte = 0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Osteophyte = 1</td>
<td>−0.20, (−0.23 to −0.17); <0.001</td>
<td>0.36, (0.31 to 0.41); <0.001</td>
</tr>
<tr>
<td>Osteophyte = 2</td>
<td>−0.34, (−0.61 to −0.48); <0.001</td>
<td>1.24, (1.11 to 1.38); <0.001</td>
</tr>
<tr>
<td>Osteophyte = 3</td>
<td>−0.62, (−0.74 to −0.51); <0.001</td>
<td>1.31, (1.12 to 1.50); <0.001</td>
</tr>
<tr>
<td>Self-reported pain</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pain present</td>
<td>−0.21, (−0.27 to −0.16); <0.001</td>
<td>0.39, (0.30 to 0.48); <0.001</td>
</tr>
<tr>
<td>Presence of nodes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nodes present</td>
<td>−0.37, (−0.40 to −0.34); <0.001</td>
<td>0.48, (0.42 to 0.55); <0.001</td>
</tr>
<tr>
<td>Pain on palpation</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No pain on palpation</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pain on palpation</td>
<td>−0.25, (−0.29 to −0.21); <0.001</td>
<td>0.37, (0.29 to 0.44); <0.001</td>
</tr>
<tr>
<td>Erosions</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>No erosive lesion present</td>
<td>−0.61, (−0.68 to −0.54); <0.001</td>
<td>1.43, (1.31 to 1.54); <0.001</td>
</tr>
<tr>
<td>Erosive lesion present</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Adj. β = adjustments made for age, sex, BMI, family effect within sib pairs and mean width of the phalanx. JSW automatically quantified, JSN scored by OARSI atlas. *Erosive lesion is defined as an erosive joint (E) or joint with a remodeled irregular sclerotic surface (R) phase.

Table V
Association of summed JSW and summed JSN with clinical determinants in hand OA patients, patient level

<table>
<thead>
<tr>
<th>Determinant</th>
<th>Summed JSW (n = 5631 joints)</th>
<th>Summed JSN (n = 5631 joints)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summed OST score (OARSI)</td>
<td>Adj. β (95% CI); P-value</td>
<td>Adj. β (95% CI); P-value</td>
</tr>
<tr>
<td>No. of joints with self-reported pain, summed</td>
<td>−0.27, (−0.34 to −0.19); <0.001</td>
<td>0.75, (0.62 to 0.88); <0.001</td>
</tr>
<tr>
<td>No. of joints with nodes, summed</td>
<td>−0.14, (−0.23 to −0.05); 0.003</td>
<td>0.30, (0.12 to 0.48); 0.001</td>
</tr>
<tr>
<td>No. of joints with pain on palpation (Doyle), summed</td>
<td>−0.28, (−0.42 to −0.14); <0.001</td>
<td>0.76, (0.50 to 1.03); <0.001</td>
</tr>
<tr>
<td>AUSCAN pain</td>
<td>−0.12, (−0.23 to −0.01); 0.03</td>
<td>0.27, (0.06 to 0.49); 0.01</td>
</tr>
<tr>
<td>AUSCAN function</td>
<td>−0.13, (−0.25 to −0.01); 0.03</td>
<td>0.25, (0.02 to 0.49); 0.04</td>
</tr>
<tr>
<td>Grip strength left hand</td>
<td>−0.11, (−0.17 to −0.05); 0.01</td>
<td>0.21, (0.08 to 0.34); 0.002</td>
</tr>
<tr>
<td>Grip strength right hand</td>
<td>0.05, (−0.02 to 0.12); 0.14</td>
<td>−0.06, (−0.19 to 0.08); 0.44</td>
</tr>
<tr>
<td>HAMIS both hands</td>
<td>0.07, (0.00 to 0.13); 0.07</td>
<td>−0.07, (−0.21 to 0.08); 0.36</td>
</tr>
<tr>
<td>HAMIS both hands</td>
<td>−0.46, (−0.68 to −0.24); <0.001</td>
<td>1.08, (0.64 to 1.52); <0.001</td>
</tr>
</tbody>
</table>

Adj. β = adjustments made for age, sex, BMI, family effect within sib pairs and mean width of the phalanx. JSW automatically quantified, JSN scored by OARSI atlas.
a longitudinal study where a relatively weak correlation was found. Furthermore, hand OA patients in the present study are not representative for the general population, since they were selected on familial OA on multiple sites. Previous studies showed that these hand OA patients were less affected by their hand complaints than hand OA patients in the rheumatology practice. Bias in the selection of hand joints in controls is possible, since patients selected from the cohort with knee complaints may be not fully comparable with a randomly selected population. However, since the knee complaints were sub-acute (and not chronic), they should not have a higher risk of the presence of hand OA at the moment of their study inclusion than a random selected control group. This is supported by the finding that the JSW of controls is higher than the hand OA patients in our population. At last, the hand radiographs were obtained with the same study protocol and technician in the majority of subjects. Since the knee population consisted mostly of males, hand radiographs of EAC-controls were included, however their radiographs were not obtained according to the study protocol. This could also lead to a bias in the mean JSW.

In conclusion, automated quantitative analyses of the JSW are a valid method to measure the JSN in relation with clinical features, such as pain and the presence of nodes. The role of measuring the JSW in hand OA patients needs to be investigated in longitudinal studies to determine if it can discriminate progression in hand OA in an earlier stage than the JSN scoring and to assess its relationship to change in symptoms over time.

Author contributions

All authors have made substantial contributions to the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting or revising the article critically for important intellectual content, (3) final approval of the version to be submitted.

Conflict of interest

None of the authors have any conflicts of interest to disclose regarding this manuscript.

Acknowledgments

The authors are grateful to Mrs Tina van Driel (TvD), the dedicated radiological technician who obtained all hand radiographs with the standardized protocol in the GARP and KART-study. The authors would also like to acknowledge support of the cooperating hospitals (Bronovo Hospital, The Hague: Dr ML Westedt; Jan van Breemen Instituut, Amsterdam: Dr D van Schaardenburg; Leyenburg Hospital, The Hague: Dr HK Ronday and Dr LN Coene; Reinier de Graaf Gasthuis, Delft: Dr AJ Peeters; Rijnland Hospital, Leiderdorp: Dr EJ van Langelan) and referring rheumatologists, orthopedic surgeons, and general practitioners. The GARP study was financially supported by Pfizer Inc., Groton, CT, USA and the Dutch Arthritis Association. However, they did not contribute to study design, data collection, data analysis, and writing of the manuscript. Publication was not contingent on the approval of the sponsors.

References

