The shared allelic architecture of adiponectin levels and coronary artery disease

Zari Dastaniaa, Toby Johnsonb,c,d, Florian Kronenberge, Christopher P. Nelsonf,g, Themistocles L. Assimesh, Winfried Märzi, CARDIoGRAM Consortium, ADIPOGen Consortium J. Brent Richardsj,k,*

aDepartment of Epidemiology, Biostatistics and Occupational Health, Jewish General Hospital, Lady Davis Institute, McGill University Montreal, Quebec H3T 1E2, Canada
bDepartment of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland
cUniversity Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Lausanne, Switzerland
dSwiss Institute of Bioinformatics, Lausanne, Switzerland
eDivision of Genetic Epidemiology, Innsbruck Medical University, 6020 Innsbruck, Austria
fDepartment of Cardiovascular Sciences, University of Leicester, Leicester LE3 9QP, UK
gNational Institute for Health Research (NIHR), Leicester Cardiovascular Disease Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
hDepartment of Medicine, Stanford University School of Medicine, Stanford, CA, USA
iSynlab Center of Laboratory Diagnostics Heidelberg, Eppelheim, Germany
jDepartment of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
kDepartments of Medicine, Human Genetics, Epidemiology and Biostatistics, Lady Davis Institute, Jewish General Hospital, McGill University Montreal, Quebec H3T 1E2, Canada

\textbf{A B S T R A C T}

Objective: A large body of epidemiologic data strongly suggests an association between excess adiposity and coronary artery disease (CAD). Low adiponectin levels, a hormone secreted only from adipocytes, have been associated with an increased risk of CAD in observational studies. However, these associations cannot clarify whether this relationship is causal or due to a shared set of causal factors or even confounding. Genome-wide association studies have identified common variants that influence adiponectin levels, providing valuable tools to examine the genetic relationship between adiponectin and CAD.

Methods: Using 145 genome wide significant SNPs for adiponectin from the ADIPOGen consortium (\(n = 49,891\)), we tested whether adiponectin-decreasing alleles influenced risk of CAD in the CARDIoGRAM consortium (\(n = 85,274\)).

Results: In single-SNP analysis, 5 variants among 145 SNPs were associated with increased risk of CAD after correcting for multiple testing (\(P < 4.4 \times 10^{-7}\)). Using a multi-SNP genotypic risk score to test whether adiponectin levels and CAD have a shared genetic etiology, we found that adiponectin-decreasing alleles increased risk of CAD (\(P = 5.4 \times 10^{-7}\)).

Conclusion: These findings demonstrate that adiponectin levels and CAD have a shared allelic architecture and provide rationale to undertake a Mendelian randomization studies to understand if this relationship is causal.

\(\copyright\) 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Coronary artery disease (CAD) is the leading cause of death in developed countries. ENREF_1 According to world health organization, CAD is responsible for approximately half of the 36 million deaths from non-communicable diseases [1]. Epidemiological studies have revealed numerous CAD risk factors such as obesity, dyslipidemia, hypertension, smoking and diabetes mellitus. Among these factors, obesity is one of the most prevalent causes of
cardiovascular morbidity and mortality [2]. Excess body fat is associated with dysregulation of several bioactive factors produced from adipose tissue which may participate in the development of obesity-related diseases [3].

Adiponectin, a hormone produced predominantly by adipocytes, has antiatherogenic and anti-inflammatory properties. Low circulating adiponectin levels have been linked to a range of important clinical parameters including blood glucose, indices of insulin resistance, proatherogenic dyslipidemia, risk of type 2 diabetes (T2D), stroke and CAD [4,5]. In a study of 225 male patients with documented CAD, compared with age-matched controls, lower plasma adiponectin levels (<4.0 μg/mL), were associated with a 2-fold higher prevalence of CAD, independent of established CAD risk factors [6]. Also, Dzielińska et al. showed that plasma adiponectin levels were decreased in a group of 99 hypertensive men with CAD, as compared to normotensive healthy subjects [7]. Similarly, a nested case-control study among 18,225 male participants in the Health Professionals Follow-up Study revealed that after adjustment for common CAD risk factors, participants in the highest, compared with the lowest, quintile of circulating adiponectin levels had a significantly lower risk of MI (RR ≤0.41; 95% CI: 0.24–0.70, P < 0.001) [5]. Lawlor et al. investigated the association of adiponectin with incidence of CAD in 4286 women who were randomly selected from 23 British towns between 1999 and 2001. Although adiponectin was associated with CAD risk factors in this study, adiponectin did not predict future risk of CAD [8]. Additional findings suggested that for each 1 μg/mL increase in plasma adiponectin level, there was an associated 3% risk reduction in CAD [9]. Lastly, a recent study demonstrated that plasma adiponectin levels in patients with acute coronary syndrome were significantly lower than those in patients with stable CAD [10]. Collectively these studies suggest that hypoadiponectinemia is a risk factor for development of atherosclerosis and CAD, underscoring the potential importance of this hormone.

Despite these associations, it is uncertain whether low adiponectin levels cause CAD. Genetic variants related to adiponectin levels can help us elucidate this relationship since they lie in the causal pathway and therefore their relationship with the outcome is likely not confounded by other risk factors. Further, since the temporal relationship between genetic variants and outcomes is clear, thereby excluding the possibility of reverse causation. Therefore, modern human genetics provides us with the opportunity to disentangle causal from non-causal associations between established risk factors including biomarkers such as adiponectin and CAD.

Variations in the gene encoding adiponectin (ADIPOQ) have been tested for their association with CAD. Two variants, rs2241766 (T>C45G), rs1501299 (G>C276T), have been assessed in several independent studies and a prospective analysis from Health Professionals follow-up study. While the rs1501299 variant showed evidence of association with CAD in Health Professionals Study [11] there was no association found in French/Swiss [12], Italian [13] and Japanese [14] studies. In addition, the rs2241766 variant was associated with CAD in the French/Swiss study [12] without showing evidence of association in Health Professional and Japanese studies [11,14]. Finally a coding variant, rs185847354, (1164T) had higher frequency among CAD cases in Japanese population [15]. Recent meta-analysis indicated a significant association of rs266729 (−1137T>C) but not rs2241766 or rs1501299 polymorphism with CAD among European and East Asian populations [16].

Several candidate and genome-wide association studies (GWAS) have shown pronounced associations between common polymorphisms in the ADIPOQ, ARL15, CDH13 and KNC1 and adiponectin levels [17–19]. Recently, in the largest multi-ethnic GWAS meta-analysis (n = 45,981) from ADIPOGen Consortium, we identified 10 novel loci for adiponectin levels and described their influence on risk of type 2 diabetes and metabolic traits [20].

In our ADIPOGen meta-analysis study, the coding and intronic variants in STAB1 and NT5DC2 were associated with weight to hip ratio (WHR) and high density lipoprotein cholesterol (HDL-C), while variants within 1 Mb of TRIB1 were associated with all lipid traits. The coding and intronic variants in the locus on chromosome 12 harboring ZNF664, CCDC92, and DNAH10 showed evidence of association with WHR, HDL-C, and TG. Finally, variants in the PEPPD were associated with TG. [20]. This suggests that variants associated with adiponectin levels also correlated with components of the metabolic syndrome.

Given the lack of certainty regarding the nature of the relationship between adiponectin and CAD and the recent identification of replicated genetic determinants of adiponectin levels, we sought to determine whether the alleles that influence adiponectin levels also influence risk of CAD in the CARDIoGRAM consortium (n = 85,274).

2. Materials and methods

2.1. CAD samples

We used meta-analytic level data from the Coronary Artery Disease Genome-wide Replication And Meta-Analysis (CARDioGRAM) consortium. Details of the design of CARDioGRAM have been published previously [21]. Briefly, the CARDioGRAM consortium combined GWAS data in individuals with European ancestry, including >22,000 cases with CAD, MI, or both and >60,000 controls, from 14 GWAS studies to understand the role of common genetic variation in CAD. The study was approved by correlated institutional review committees and that the subjects gave informed consent.

2.2. SNP selection

Through the ADIPOGen consortium we have recently conducted a meta-analysis of GWAS for adiponectin levels in European cohorts and in the joint analysis of discovery, in-silico and de-novo follow-up phases of study (n = 39,883) identified 162 SNPs to be genome-wide significant (p < 5.0 × 10^{-8}) in their relationship with adiponectin levels [20]. (Table S1). These results include the previously described associations with adiponectin at ADIPOQ and KNG1 on chromosome 3, and CDH13 on chromosome 16. These analysis also identified novel loci on chromosome 1, 6, 8, 12, 16, and 19. Details of genotyping methods and quality control criteria have been described previously [20,21].

2.3. Statistical analysis

Single-SNP analyses: We employed the Single Nucleotide Polymorphism Spectral Decomposition (SNPSpD) method that developed by Nyholt D [22]. This method corrects the multiple testing based on linkage disequilibrium (LD) using spectral decomposition matrices of pairwise LD between SNPs. Using this method, 145 SNPs were estimated to be equivalent to 113 independent statistical tests due to LD for their association. So we employed a Bonferroni-corrected threshold of α = 4.4 × 10^{-4} (where 4.4 × 10^{-4} = 0.05/ 113) to define the threshold of association for any individual SNP association with CAD.

Multi-SNP Genotyping Risk Score: Using the 145 SNPs which were genome-wide significant for their relationship with adiponectin levels in cohorts of European ancestry from the ADIPOGen consortium, we selected LD-independent adiponectin associated alleles by LD pruning the set of genome-wide significant adiponectin SNPs...
with an LD threshold of $r^2 \leq 0.05$ in the HapMap CEU population. Since many SNPs from the same independent blocks were associated with adiponectin, we selected the SNP from the LD block that explained the most variance in adiponectin levels. Next, we approximated the effect of the multi-SNP genetic risk score by calculating the combined effect of LD-independent adiponectin risk alleles on the trait of interest. This is determined as “a” in the below,

$$a = \frac{\sum (\hat{g}_i/S_{1i}^2)}{\sum 1/S_{1i}^2}$$

Here \hat{g}_i is the effect of the adiponectin-lowering alleles of a given LD-independent set of adiponectin SNPs, and S_{1i} is its standard error, as derived from consortium-level meta-analytic data for ADIPOGen. The weighted sum of the individual SNP coefficients, weighted by the estimates from the ADIPOGen data, leads only to an estimate of the average combined allelic effect, but also to an approximate estimate of the model R^2 (when scaled by the inverse of the total meta-analysis sample size) from a multivariate regression model containing these SNPs. Therefore, estimates of single SNP effects, obtained from the meta-analysis, can be used to obtain estimates of their joint effects. We have described this method in further detail elsewhere[20].

3. Results

145 out of 162 SNPs were available in CARDIoGRAM consortium results (Table S2). SNPs from the method identified that there were 113 statistically independent SNPs among the 145 SNPs. 49 of the 145 variants had p-values less than 0.05 for their association with CAD in the CARDIoGRAM consortium. However, only 5 variants remained significantly associated with CAD after correction for multiple testing ($P < 4.4 \times 10^{-4}$ (Table 1, Table S3)). These SNPs (rs2954026, rs7846466, rs2954032, rs2954033, rs2980859) are located in a locus on chromosome 8 near TRIB1 (40 kb from the gene). The per-allele odds ratios for CAD risk for each of these significant variants at TRIB1 ranged from 1.05 to 1.06.

Next, we derived a multi-SNP genotypic risk score based on genome-wide significant SNPs from ADIPOGen Consortium and tested the association of this risk score with risk of CAD in the CARDIoGRAM consortium. The score included genotype information at 17 of the 145 SNPs representing independent LD blocks (Table S2). The multi-SNP genotypic risk score was associated with increased risk for CAD ($\beta = 0.021, P = 5.4 \times 10^{-7}$), where β is the average additive effect of adiponectin-decreasing risk alleles on the log odds ratio (OR = 1.02, 95% CI (1.013–1.030)) for CAD. These results remained significant after removing TRIB1 locus SNPs ($\beta = 0.019, P = 2.68 \times 10^{-5}$).

4. Discussion

While CAD risk is associated with lower adiponectin levels in observational studies it is unclear if this is due to a direct role of adiponectin, the factors influencing adiponectin levels, or unmeasured confounders. Using 145 genome-wide significant SNPs for adiponectin levels, we demonstrate that adiponectin decreasing alleles are, on average, associated with an increased risk of CAD, and that variants near TRIB1 are associated with both traits. These findings suggest that either adiponectin levels, or the genetic factors influencing adiponectin levels, impact on risk of CAD.

After accounting for multiple testing we identified five variants near the TRIB1 that were associated with CAD and adiponectin levels. While this highlights the importance of this locus, the multi-SNP allelic risk score remained associated with CAD even after excluding this locus. TRIB1 is located on chromosome 8 and encodes a G protein-coupled receptor-induced protein that interacts with Mitogen-activated protein MAP kinases and regulates the activation of MAP kinases [23]. MAP kinases signaling regulates the proliferation and chemotaxis of vascular smooth muscle cells. TRIB1 expression was shown to be elevated in human atherosclerotic arteries [24]. Interestingly, several variants (rs2954029, rs2954021, rs1732156) in the TRIB1 have been associated with HDL-C, LDL-C, and CAD risk in European and Asian populations [25–27]. Two out of five SNPs (rs2954026, rs2954033) on chromosome 8 near TRIB1 were also reported to be associated metabolic syndrome in the STAMPEED Consortium study [28]. Our findings are consistent with the finding from the IBC 50K CAD Consortium that suggested an odd ratio of 1.06 for CAD risk with the variants in this gene [29].

Furthermore, functional studies in mice provided evidence that TRIB1 play a role in lipoprotein metabolism in mice. Burkhardt et al. demonstrated that the overexpression of trb1 reduced VLDL production that accordingly decreased the plasma triglyceride and cholesterol. Also trb1-knockout animals showed elevated levels of both triglycerides and cholesterol [30]. Their study revealed that TRIB1 influences expression of lipogenic genes and lipogenesis in hepatocytes, with consequent effects on the plasma lipids and risk for CAD [30]. These findings provide evidence that a TRIB1-modulating agent might be novel pathway to target for management of dyslipidemia and prevention of CAD. One study investigated the relation between TRIB1 polymorphisms and type 2 diabetes (T2DM) and related traits in Chinese population and revealed that no significant correlation with T2DM, while indicated the association with T2DM combined CAD [31].

We are now aware of any of functional studies interrogating the role of TRIB1 in adiponectin metabolism. We postulate that TRIB1 could either influence the expression of the ADIPOQ or other genes involved in production of adiponectin, or enhance the elimination of the adiponectin protein. The effect of TRIB1 on adiponectin may also be through its effect on lipogenic genes and lipogenesis [30]. Moreover, the involvement of TRIB1 in vascular biology of smooth muscle cells may affect adiponectin regulation through CDH13, a receptor for adiponectin expressed by endothelial smooth muscle. Despite the fact that TRIB1 is a far weaker determinant of adiponectin compared to ADIPOQ, the stronger evidence of association of TRIB1 with CAD might be through the synergistic effect of TRIB1 on lipid traits and adiponectin and its subsequent involvement in atherosclerosis.

This study provides evidence of a shared allelic architecture between adiponectin and CAD, but does not constitute a Mendelian randomization study. This is because the study design employed cannot differentiate between SNPs that directly influence CAD through adiponectin levels and SNPs that influence CAD directly, but also influence adiponectin levels (i.e. pleiotropy). Thus, we caution that our results should not imply a causal relationship between adiponectin levels and CAD, as the effects of the SNPs
influencing adiponectin may also influence CAD in pathways that are independent on adiponectin levels. Nonetheless, in aggregate, these findings suggest that at least some of the genetic variants influencing adiponectin also influence the risk of CAD.

In summary, our results provide direct evidence that a shared set of genetic factors exist that influences both adiponectin levels and CAD, suggesting that previous described epidemiologic relationships between decreased adiponectin levels and CAD are not due to unobserved confounding factors. These findings therefore provide rationale to undertake a Mendelian randomization to understand if the relationship between adiponectin and CAD is causal, or through shared pleiotropic factors.

Conflict of interest statement

The authors declare no conflict of interest.

Acknowledgments

We thank all study participants, volunteers, and study personnel that made this consortium possible. This work was supported by grants from the Canadian Foundation for Innovation, the Canadian Institutes of Health Research (CIHR), Fonds de la recherche en sante du Québec, the Lady Davis Institute and the Jewish General Hospital. Drs. Richards and Dastani are supported by the CIHR. The other authors declare no competing financial interests.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.atherosclerosis.2013.03.034.

References

[3] Spiegelman BM, Choy L, Hotamisligil GS, Graves RA, Tontonoz P. Regulation of adipocyte gene expression in differentiation and syndromes of obesity/dia-

[12] Jacqueumont C, Froguel P, Lobbens S, Izzo P, Dina C, Ruiz J. The adiponectin gene SNP+45 is associated with coronary artery disease in Type 2 (non-insu-

[30] Burkhardt R, Toh SA, Lagor WR, et al. TriB1 is a lipid- and myocardial infarction-associated gene that regulates hepatic lipogenesis and VLDL produc-